

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY

ON r*bg* - CLOSED MAPS AND r*bg* - OPEN MAPS IN TOPOLOGICAL SPACES Elakkiva M*, Asst. Prof. N.Balamani

* Department of Mathematics, Avinashilingam University, Coimbatore – 641043, Tamil Nadu, India. Department of Mathematics, Avinashilingam University, Coimbatore – 641043, Tamil Nadu, India.

ABSTRACT

The purpose of this paper is to introduce r^*bg^* - closed maps and r^*bg^* - open maps and study their behaviour and properties in topological spaces. Additionally we discuss some relationships between r^*bg^* - closed maps and other existing closed maps. Moreover we investigate and obtain some interesting theorems.

KEYWORDS: closed maps, open maps, r*bg* - closed maps, r*bg* - open maps, g – closed maps, closed maps.

INTRODUCTION

Levine [9] introduced the concept of generalized closed sets in topological spaces. Andrijevic [2] introduced and studied the concepts of b-open sets. Palaniappan et.al [16] introduced and investigate the concept of regular generalized closed set. Elakkiya et. al [8] introduced and studied r*bg* - closed sets. Generalized closed mappings were introduced and studied by Malghan [12]. rg - closed maps were introduced and studied by Arokiarani [3] . A.A.Omari and M.S.M. Noorani [1] introduced and studied b-closed maps. Muthuvel et.al [14] introduced and studied b* - closed maps in topological spaces.

In this paper, we introduce r*bg* - closed maps and r*bg* - open maps in topological spaces and investigate some of their properties.

2 Preliminaries

Definition 2.1: A subset A of a topological space (X, τ) is said to be

- i. Generalized closed (briefly g closed) set
 [9] if cl(A) ⊆ U whenever A ⊆ U and U is open in X.
- ii. semi generalised closed (briefly sg - closed) set [5] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi open in X.
- iii. generalized semi closed (briefly gs closed) set [4] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
- iv. generalized α closed (briefly $g\alpha$ closed) set [11] if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is α - open in X.

v. semi – weakly generalized closed (briefly swg – closed) set [15] if $cl(int(A)) \subseteq U$ whenever $A \subseteq U$ and U is semi open.

b* -

- vi. regular generalized closed (briefly rg - closed) set [16] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in X.
- vii. α generalized regular closed (briefly α gr - closed) set [18] if α cl(A) \subseteq U whenever A \subseteq U and U is regular open in X.
- viii. b^* closed set [13] if $int(cl(A)) \subseteq U$ whenever $A \subseteq U$ and U is b - open in X.
- ix. g^*s closed set [17] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is gs open in X.
- x. r^*bg^* closed set [8] if $rbcl(A) \subseteq U$ whenever $A \subseteq U$ and U is b - open in X.
- xi. $b closed set [2] if cl(int(A)) \cap int(cl(A))$ $\subseteq A.$

Definition 2.2 :

Let X and Y be two topological spaces. A map $f: (X, \tau) \rightarrow (Y, \sigma)$ is called

- i. g closed map [12] if the image of every closed set in (X, τ) is g closed in (Y, σ) .
- ii. b closed map [1] if the image of every closed set in (X, τ) is b closed in (Y, σ) .
- iii. sg closed map [7] if the image of every closed set in (X, τ) is sg closed in (Y, σ) .
- iv. gs closed map [6] if the image of every closed set in (X, τ) is gs closed in (Y, σ) .
- v. $g\alpha$ closed map [10] if the image of every closed set in (X, τ) is $g\alpha$ closed in (Y, σ) .
- vi. swg closed map [15] if the image of every closed set in (X, τ) is swg closed in (Y, σ) .

http://www.ijesrt.com@International Journal of Engineering Sciences & Research Technology

- vii. rg closed map [3] if the image of every closed set in (X, τ) is rg closed in (Y, σ) .
- viii. $\alpha gr closed map [18]$ if the image of every closed set in (X, τ) is $\alpha gr closed$ in (Y, σ) .
- ix. b^* closed map [14] if the image of every closed set in (X, τ) is b^* closed in (Y, σ) .
- x. g^*s closed map [17] if the image of every closed set in (X, τ) is g^*s closed in (Y, σ) .

3 $\mathbf{r}^*\mathbf{bg}^*$ - Closed Maps and $\mathbf{r}^*\mathbf{bg}^*$ - Open Maps Definition 3.1 Let X and Y be two topological spaces. A map $f : (X, \tau) \rightarrow (Y, \sigma)$ is called $\mathbf{r}^*\mathbf{bg}^*$ - closed map if the image of every closed set in (X, τ) is $\mathbf{r}^*\mathbf{bg}^*$ - closed in (Y, σ) .

Example 3.2

Let X = Y = {a, b c} with topologies $\tau = \{\phi, X, \{a\}\}$ and $\sigma = \{\phi, Y, \{b\}\}$. Let f : X \rightarrow Y be defined by f(a) = b, f(b) = a, f(c) = c. Then f is r*bg* - closed map.

Definition 3.3

Let X and Y be two topological spaces. A map $f: (X, \tau) \rightarrow (Y, \sigma)$ is called r^*bg^* - open map if the image of every open set in (X, τ) is r^*bg^* - open in (Y, σ) .

Example 3.4

Let $X = Y = \{a, b, c\}$ with topologies $\tau = \{\phi, X, \{a\}\}$ and $\sigma = \{\phi, Y, \{a\}, \{b, c\}\}$. Let $f: X \rightarrow Y$ be the identity map. Then f is r*bg* - open map.

Theorem 3.5

If $f: X \to Y$ be a function from a topological space (X, τ) into a topological space (Y, σ) is an closed map then it is r^*bg^* - closed map but not conversely.

Proof :Let $f : X \to Y$ be an closed map. Let F be any closed set in X. Then f(F) is an closed set in Y. Since every regular closed set is r^*bg^* - closed set and every regular closed is closed, f(F) is a r^*bg^* - closed set. Therefore f is r^*bg^* - closed map.

The converse of the above theorem need not be true as seen from the following example.

Example 3.6

Let $X = Y = \{a, b, c\}$ with topologies $\tau = \{\phi, X, \{b\}\}$ and $\sigma = \{\phi, Y, \{c\}\}$. Let $f : X \to Y$ be the identity map. Then f is r*bg* - closed but not closed. Since the image of the closed set $\{a, c\}$ in X is $\{a, c\}$ is not closed in Y.

Theorem 3.7

Every r^bg^- closed map is b – closed map but not conversely.

Proof:

Let $f: X \to Y$ be r^*bg^* - closed map and V be an closed set in X then f(V) is r^*bg^* - closed in Y. Since every r^*bg^* - closed set is b - closed set, f(V) is a b - closed set in Y. Then f is b - closed map.

ISSN: 2277-9655 Scientific Journal Impact Factor: 3.449 (ISRA), Impact Factor: 2.114

The converse of the above theorem need not be true as seen from the following example.

Example 3.8

Consider X = Y = {a, b, c} with topologies $\tau = \{\phi, X, \{a\}\}$ and $= \{\phi, Y, \{c\}, \{a, c\}\}$. Let $f: X \to Y$ be an identity map. Then f is b – closed map but not r*bg* - closed map, since for the closed set {b, c} in X, f({b, c}) = {b, c} is not r*bg* - closed in Y.

Theorem 3.9

Every r*bg*- closed map is g – closed map but not conversely.

Proof:

Let $f: X \to Y$ be r^*bg^* - closed map and V be an closed set in X then f (V) is r^*bg^* - closed in Y. Since every r^*bg^* - closed set is g - closed, f(V) is g - closed in Y. Then f is g - closed map.

The converse of the above theorem need not be true as seen from the following example.

Example 3.10

Consider X = Y = {a, b, c} with topologies $\tau = \{\phi, X, \{a\}\}$ and $= \{\phi, Y, \{b\}\}$. Let $f : X \to Y$ be an identity map. Then f is g – closed map but not r*bg* - closed map, since for the closed set {b, c} in X, f({b, c}) = {b, c} is not r*bg* - closed in Y.

Theorem 3.11

Every r*bg*- closed map is gs – closed map but not conversely.

Proof:

Let $f: X \to Y$ be r^*bg^* - closed map and V be an closed set in X then f(V) is r^*bg^* - closed in Y. Since every r^*bg^* - closed set is gs - closed, f(V) is gs - closed in Y. Then f is gs - closed map.

The converse of the above theorem need not be true as seen from the following example.

Example 3.12

Consider X = Y = {a, b, c} with topologies $\tau = \{\phi, X, \{a\}, \{a, b\}\}$ and $= \{\phi, Y, \{b\}, \{a, b\}, \{b, c\}\}$. Let f : X \rightarrow Y be an identity map. Then f is gs – closed map but not r*bg*-closed map, since for the closed set {b, c} in X, f({b, c}) = {b, c} is not r*bg* - closed in Y.

Theorem 3.13

Every $r^{*}bg^{*}$ - closed map is $g\alpha$ – closed map but not conversely.

Proof:

Let $f: X \to Y$ be r^*bg^* - closed map and V be an closed set in X then f(V) is r^*bg^* - closed in Y. Since every r^*bg^* - closed set is $g\alpha$ - closed, f(V) is $g\alpha$ - closed in Y. Then f is $g\alpha$ - closed map.

The converse of the above theorem need not be true as seen from the following example. **Example 3.14**

http://www.ijesrt.com@International Journal of Engineering Sciences & Research Technology

Consider X = Y = {a, b, c} with topologies $\tau = \{\varphi, X, \{c\}, \{a, c\}\}$ and $= \{\varphi, Y, \{a\}, \{a, b\}\}$. Let f: X \rightarrow Y be defined by f(a) = c, f(b) = b, f(c) = a. Then f is $g\alpha$ – closed map but not r*bg*-closed map, since for the closed set {b} in X, $f(\{b\}) = \{b\}$ is not r*bg* - closed in Y.

Theorem 3.15

Every r*bg*- closed map is swg - closed but not conversely.

Proof:

Let $f: X \to Y$ be r^*bg^* - closed map and V be an closed set in X then f(V) is r^*bg^* - closed in Y. Since every r^*bg^* - closed set is swg - closed, f(V) is swg - closed in Y. Then f is swg - closed map.

The converse of the above theorem need not be true as seen from the following example.

Example 3.16

Consider X = Y = {a, b, c} with topologies $\tau = \{\phi, X, \{b\}, \{a, b\}, \{b, c\}\}$ and $\sigma = \{\phi, Y, \{a\}, \{b, c\}\}$. Let f : X \rightarrow Y be an identity map. Then f is swg – closed map but not r*bg* - closed map, since for the closed set {c} in X, f({c}) = {c} is not r*bg* - closed in Y.

Theorem 3.17

Every $r^{*}bg^{*}$ - closed map is rg – closed map but not conversely.

Proof:

Let $f: X \to Y$ be r^*bg^* - closed map and V be an closed set in X then f(V) is r^*bg^* - closed in Y. Since every r^*bg^* - closed is rg - closed in Y, f(V) is rg - closed in Y. Then f is rg - closed map.

The converse of the above theorem need not be true as seen from the following example.

Example 3.18

Consider $X = Y = \{a, b, c\}$ with topologies $\tau = \{\phi, X, \{b\}, \{a, b\}, \{b, c\}\}$ and $\sigma = \{\phi, Y, \{a\}, \{a, b\}\}$. Let $f : X \to Y$ be an identity map. Then f is rg – closed map but not r*bg*-closed map, since for the closed set $\{a, c\}$ in X, $f(\{a, c\}) = \{a, c\}$ is not r*bg* - closed in Y.

Theorem 3.19

Every r^bg^* - closed map is $\alpha gr - closed$ map but not conversely.

Proof:

Let $f: X \to Y$ be r^*bg^* - closed map and V be an closed set in X then f(V) is r^*bg^* - closed in Y. Since every r^*bg^* - closed set is αgr - closed, f(V) is αgr - closed in Y. Then f is αgr - closed map.

The converse of the above theorem need not be true as seen from the following example.

Example 3.20

Consider X = Y = {a, b, c} with topologies $\tau = \{\varphi, X, \{b\}, \{a, c\}\}$ and $\sigma = \{\varphi, Y, \{a\}, \{a, b\}\}$. Let f : X \rightarrow Y be an identity map. Then f is α gr – closed

map but not r^bg^* -closed map, since for the closed set {b} in X, f({b}) = {b} is not r^bg^* - closed in Y. **Remark 3.21**

The following examples show that r^*bg^* - closed maps are independent of sg – closed maps, g^*s - closed maps.

Example 3.22

Let $X = Y = \{a, b, c\}$ with the topologies $\tau = \{\phi, X, \{c\}, \{a, b\}\}$ and $\sigma = \{\phi, Y, \{a\}, \{b\}, \{a, b\}\}$. Let $f: X \rightarrow Y$ be defined by f(a) = a, f(b) = c, f(c) = b. Then f is sg – closed map but not r*bg* - closed map.

Example 3.23

Let $X = Y = \{a, b, c\}$ with topologies $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ and $\sigma = \{\phi, Y, \{b\}\}$. Let $f : X \rightarrow Y$ be defined by f(a) = a, f(b) = c, f(c) = b. Then f is r*bg* - closed map but not sg - closed map. **Example 3.24**

Let $X = Y = \{a, b, c\}$ with topologies $\tau = \{\phi, X, \{c\}\}$ and $\sigma = \{\phi, Y, \{a\}, \{b, c\}\}$. Let $f: X \rightarrow Y$ be an identity map. Then f is g^*s – closed map but not r^*bg^* - closed map.

Example 3.25

Let $X = Y = \{a, b, c\}$ with topologies $\tau = \{\phi, X, \{a\}\}$ and $\sigma = \{\phi, Y, \{c\}\}$. Let $f : X \to Y$ be defined by f(a) = c, f(b) = a, f(c) = b. Then f is r^*bg^* - closed map but not g^*s - closed map.

Theorem 3.26

Every open map in (X, τ) is r^*bg^* - open map but not conversely.

Proof :

Let $f: X \to Y$ be an open map. Let F be any open set in X. Then f(F) is an open set in Y. Since every regular open set is r^*bg^* - open and every regular open is open, f(F) is a r^*bg^* - open set. Therefore f is r^*bg^* - open map.

The converse of the above theorem need not be true as seen from the following example.

Example 3.27

Let $X = Y = \{a, b, c\}$ with topologies $\tau = \{\phi, X, \{c\}\}$ and $\sigma = \{\phi, Y, \{a\}, \{b\}, \{a, b\}, \{b, c\}\}$. Let $f: X \to Y$ be the identity map. Then f is r^*bg^* - open map but not an open map, Since the image of the open set $\{c\}$ is not open in Y.

Remark 4.33

The following diagram shows the relationship between r*bg* - closed maps with various existing closed maps.

In this diagram CM means closed maps.

http://www.ijesrt.com© International Journal of Engineering Sciences & Research Technology

Theorem 3.28

A map $f: X \to Y$ is r^*bg^* - closed if and only if for each subset S of Y and for each open set U containing $f^{-1}(S)$ there exists a r^*bg^* - open set V of Y such that $S \subseteq V$ and $f^{-1}(V) \subseteq U$.

Proof :

Necessity: Suppose that f is a r^*bg^* - closed map. Let $S \subseteq Y$ and U be an open subset of X such that $f^{-1}(S) \subseteq U$. Let V = Y - f(X - U). Since f is r^*bg^* - closed, V is r^*bg^* - open set containing S such that $f^{-1}(V) \subseteq U$.

Sufficiency: let F be a closed set of X. Then $f^{-1}((f(F))^c) \subseteq F^c$ and F^c is open. By assumption, there exist a r^*bg^* - open set V of Y such that $(f(F))^c \subseteq V$ and $f^{-1}(V) \subseteq F^c$ and so $F \subseteq (f^{-1}(V))^c$. Hence $V^c \subseteq f(F) \subseteq f((f^{-1}(V))^c) \subseteq V^c$ which implies that $f(F) = V^c$. Since V^c is r^*bg^* - closed, f(V) is r^*bg^* - closed and therefore f is r^*bg^* - closed.

Theorem 3.29

If $f: X \to Y$ is a closed map and $g: Y \to Z$ is r^*bg^* - closed map then $g \circ f: X \to Z$ is r^*bg^* - closed map.

Proof :

Let $f: X \to Y$ is a closed map and $g: Y \to Z$ is a r^*bg^* - closed map. Let V be any closed set in X. Since $f: X \to Y$ is closed map, f(V) is closed in Y and since $g: Y \to Z$ is r^*bg^* - closed map, g(f(V)) is r^*bg^* closed in Z. Therefore $g \circ f: X \to Z$ is r^*bg^* - closed map.

Remark 3.30

The following example shows that the composition of two r^*bg^* - closed maps is r^*bg^* - closed map.

Example 3.31

Let $X = Y = \{a, b, c\}$ with topologies $\tau = \{\phi, X, \{a\}\}, \sigma = \{\phi, Y, \{b\}\}$ and $\eta = \{\phi, Z, \{a\}, \{b, c\}\}$. Define a map $f : X \to Y$ by f(a) = b, f(b) = a and f(c) = c and a map $g : Y \to Z$ by g(a) = b, g(b) = a, g(c) = c. Then both f and g are r^*bg^* - closed maps but their composition

ISSN: 2277-9655 Scientific Journal Impact Factor: 3.449 (ISRA), Impact Factor: 2.114

 $g \circ f : X \to Z$ is not $r^{*}bg^{*}$ - closed map. Since for the closed set {b, c} in X, $(g \circ f)(\{b, c\}) = \{b, c\}$ is $r^{*}bg^{*}$ - closed set in Z.

Remark 3.32

If $f: X \to Y$ is r^*bg^* closed map and $g: Y \to Z$ is closed then their composition need not be a r^*bg^* - closed map as seen from the following example.

Example 3.33

Let X = Y = {a, b, c} with the topologies $\tau = \{\varphi, X, \{a\}, \{b\}, \{a, b\}, \{b, c\}\}, \sigma = \{\varphi, Y, \{a, b\}, \{b\}\}$ and $\eta = \{\varphi, Z, \{b\}, \{b, c\}, \{a, b\}\}$. Define a map f : X \rightarrow Y by f(a) = a, f(b) = c, f(c) = b and g : Y \rightarrow Z by g(a) = b, g(b) = a, g(c) = c. Then f is a r*bg* - closed map and g is closed map. But their composition g \circ f : X \rightarrow Z is not a r*bg* - closed map. Since for the closed set {a, b} in X, $(g \circ f)(\{a, b\}) = \{b, c\}$ is not r*bg* - closed in Z.

Theorem 3.34

For any bijection $f : (X, \tau) \rightarrow (Y, \sigma)$ the following are equivalent.

- a) f⁻¹ : (Y, σ) \rightarrow (X, τ) is r^*bg^* continuous.
- b) f is a r^*bg^* open map.
- c) f is a r^*bg^* closed map.

Proof:

- a) \Rightarrow (b) : Let U be an open set of (X, τ) . By assumption, $(f^{-1})^{-1}(U) = f(U)$ is r^*bg^* – open in (Y, σ) and so f is r^*bg^* – open map.
- b) \Rightarrow (c) : Let F be a closed set of (X, τ). Then F^c is open in (X, τ). By assumption, f (F^c) is r*bg* - open in (Y, σ). (i.e), f (F^c) = (f (F))^c is r*bg* - open in (Y, σ) and therefore f (F) is r*bg* - closed in (Y, σ). Hence f is r*bg* - closed.
- c) \Rightarrow (a) : Let F be a closed set of (X, τ). By assumption, f (F) is r*bg* –closed in (Y, σ). But f (F) = (f⁻¹)⁻¹(F) and therefore f⁻¹ is r*bg* –continuous on Y.

Theorem 3.35

If $f: X \to Y$ is a continuous, r^*bg^* - closed map from a normal space X onto a space Y, then Y is normal.

Proof :

Let A, B be disjoint closed sets of Y. Then $f^{-1}(A)$ and $f^{-1}(B)$ are disjoint closed set of X. Since X is normal there are disjoint open sets U, V in X such that $f^{-1}(A) \subseteq U$ and $f^{-1}(B) \subseteq V$. Since f is r^*bg^* - closed, then by theorem 3.28, there exists r^*bg^* - open sets G, H in Y such that $A \subseteq G, B \subseteq H$, $f^{-1}(G) \subseteq U$ and $f^{-1}(H) \subseteq V$. Since U, V are disjoint, int(G) and int(H) are disjoint open sets. Since G is

http://www.ijesrt.com© International Journal of Engineering Sciences & Research Technology

r*bg* - open A is closed and A ⊆ G, A ⊆ int(G). Similarly B ⊆ int(H). Hence Y is normal. **Theorem 3.48**

1 neorem 3.48

If $f: (X, \tau) \rightarrow (Y, \sigma)$ is an open, continuous, r*bg*- closed surjection and cl(F) = F for every r*bg* - closed set in (Y, σ) , where X is regular, then Y is regular.

Proof :

Let U be an open set in Y and $p \in U$. Since f is surjection, there exists a point $x \in X$ such that f(x) = p. Since X is regular and f is continuous, there is an open set V in X such that $x \in V \subset cl(V) \subset f^{-1}(U)$. Here $p \in f(V) \subset f(cl(V)) \subset U \rightarrow (i)$.

Since f is r*bg*- closed, f(cl(V)) is r*bg*- closed set contained in the open set U. By hypothesis, cl(f(cl(V))) = f(cl(V)) and $cl(f(V)) = cl(f(cl(V))) \rightarrow (ii)$.

From (i) and (ii), we have $p \in f(V) \subset cl(f(V)) \subset U$ and f(V) is open, since f is open. Hence Y is regular.

REFERENCES

- Ahmad Al Omari and Mohd. Salim Md. Noorani, On generalized b – closed sets. Bull. Malays. Math. Science Soc(2) 32(1) (2009),19-30.
- [2] Andrijevic. D, On b open sets, Mat. Vesink, 48 (1996), 59-64.
- [3] I.Arockiarani, Studies on Generalizations of Generalized Closed Sets and Maps in Topological Spaces, Ph. D Thesis, Bharathiar University, Coimbatore, (1997).
- [4] Arya S. P and Nour. T, characterization of s – normal spaces, Indian J. Pure.Appl. Math.,21(8)(1990), 717 – 719.
- [5] Bhattacharya and Lahiri. B.K, Semi generalized closed sets in topology, Indian 29(3) (1987), 375 382.
- [6] Devi, R., Maki, H. and Balachandran, K.,
 "Semi generalized closed maps and generalized semi closed maps", Mem. Fac. Sci. Kochi Univ. Ser.A. Math., 14 (1993), 41 54.
- [7] Devi R, Mahi. H and Balachandran K., Semi – generalized homeomorphisms and generalized semi – homeomorphisms in topological spaces, Indian J. Pure. Appl. Math., 26(3)(1995), 271 – 284.
- [8] M. Elakkiya, N. Sowmya, and N. Balamani, r*bg* - closed sets in topological Spaces, International Journal Of Advance Foundation and research in Computer, Volume 2, Issue1, January2015.

ISSN: 2277-9655 Scientific Journal Impact Factor: 3.449 (ISRA), Impact Factor: 2.114

- [9] Levine N, Generalized closed sets in topology,Rend.cire.math.Plaermo,19(2) (1970).
- [10] H. Maki, R. Devi and K. Balachandran, Associated topologies of generalized α closed sets and α -generalized closed sets, Mem. Fac. Sci. Kochi Univ. Ser.A. Math., 15(1994),51-63.
- [11] H.Maki, R.Devi, and K.Balachandran ,Generalised α-Closed sets in Topology, Bull.Fukuoka Univ,Ed.,Part III., 42, 1993,13-21.
- [12] S. R. Malghan, Generalized Closed Maps, J. Karnatk Univ. Sci., 27 (1982), 82-88.
- [13] Muthuvel.S and Parimelazhagan .R, b*-closed sets in topological spaces, Int. Journal of Math.Analysis, Vol.6,2012, no.47,2317-2323.
- [14] Muthuvel.S and Parimelazhagan .R, b*-continuous functions in topological spaces, Int. Journal of Computer Application, Vol.58, no.13,0975- 8887.
- [15] N. Nagaveni, studies on generalization of Homeomorphisms in topological spaces, Ph.D. Thesis – Bharathiyar University, July 1999.
- [16] Palaniappan.N and K. C. Rao, Regular generalized closed sets, Kyungpook Math.J. 33(1993), 211-219.
- [17] Pushpalatha A and Anitha K. g*s–closed sets in topological spaces, Int. J. contemp. Math. Science, Vol.6;March-2011,no19,917-929.
- [18] M.K.R.S.Veera Kumar, On α-Generalised –Regular Closed Sets, Indian Journal of Mathematics.,44(2),2002, 165-181.

http://www.ijesrt.com@International Journal of Engineering Sciences & Research Technology