

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY

ON r*bg* - CLOSED MAPS AND r*bg* - OPEN MAPS IN TOPOLOGICAL SPACES Elakkiya M* , Asst. Prof. N.Balamani

* Department of Mathematics, Avinashilingam University, Coimbatore – 641043, Tamil Nadu, India. Department of Mathematics, Avinashilingam University, Coimbatore – 641043, Tamil Nadu, India.

ABSTRACT

The purpose of this paper is to introduce $r * bg * - closed$ maps and $r * bg * - open$ maps and study their behaviour and properties in topological spaces. Additionally we discuss some relationships between r*bg* - closed maps and other existing closed maps. Moreover we investigate and obtain some interesting theorems.

KEYWORDS: closed maps, open maps, r^*bg^* - closed maps, r^*bg^* - open maps, g – closed maps, b* -

closed maps. **INTRODUCTION**

Levine **[9]** introduced the concept of generalized closed sets in topological spaces. Andrijevic **[2]** introduced and studied the concepts of b-open sets. Palaniappan et.al **[16]** introduced and investigate the concept of regular generalized closed set. Elakkiya et. al **[8]** introduced and studied r*bg* - closed sets. Generalized closed mappings were introduced and studied by Malghan **[12]**. rg - closed maps were introduced and studied by Arokiarani **[3]** . A.A.Omari and M.S.M. Noorani **[1]** introduced and studied b-closed maps. Muthuvel et.al **[14]** introduced and studied b* - closed maps in topological spaces.

 In this paper, we introduce r*bg* - closed maps and r*bg* - open maps in topological spaces and investigate some of their properties.

2 Preliminaries

Definition 2.1: A subset A of a topological space (X, τ) is said to be

- i. Generalized closed (briefly g closed) set **[9]** if cl(A) \subseteq U whenever A \subseteq U and U is open in X.
- ii. semi generalised closed (briefly sg - closed) set **[5]** if $\text{scl}(A) \subseteq U$ whenever $A \subseteq U$ and U is semi open in X.
- iii. generalized semi closed (briefly gs closed) set **[4]** if scl(A) \subseteq U whenever A \subseteq U and U is open in X.
- iv. generalized α closed (briefly g α closed) set **[11]** if α cl(A) \subseteq U whenever A \subseteq U and U is α – open in X.
- v. semi weakly generalized closed (briefly swg – closed) set [15] if $cl(int(A)) \subseteq U$ whenever $A \subseteq U$ and U is semi open.
- vi. regular generalized closed (briefly rg - closed) set [16] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in X.
- vii. α generalized regular closed (briefly α gr - closed) set **[18]** if α cl(A) \subseteq U whenever $A \subseteq U$ and U is regular open in X.
- viii. b^* closed set [13] if $int(cl(A)) \subseteq U$ whenever $A \subseteq U$ and U is b – open in X.
- ix. g^*s closed set [17] if scl(A) \subseteq U whenever $A \subseteq U$ and U is gs – open in X.
- x. r^*bg^* closed set [8] if $rbcl(A) \subseteq U$ whenever $A \subseteq U$ and U is b – open in X.
- xi. b closed set [2] if $cl(int(A))$ ∩ $int(cl(A))$ ⊆ A.

Definition 2.2 :

Let X and Y be two topological spaces. A map f : $(X, \tau) \rightarrow (Y, \sigma)$ is called

- i. g closed map **[12]** if the image of every closed set in (X, τ) is g - closed in (Y, σ) .
- ii. b closed map **[1]** if the image of every closed set in (X, τ) is b - closed in (Y, σ) .
- iii. sg closed map **[7]** if the image of every closed set in (X, τ) is sg - closed in (Y, σ) .
- iv. gs closed map **[6]** if the image of every closed set in (X, τ) is gs - closed in (Y, σ) .
- v. gα closed map **[10]** if the image of every closed set in (X, τ) is ga - closed in (Y, σ) .
- vi. swg closed map **[15]** if the image of every closed set in (X, τ) is swg - closed in (Y, σ) .

- vii. rg closed map **[3]** if the image of every closed set in (X, τ) is rg - closed in (Y, σ) .
- viii. αgr closed map **[18]** if the image of every closed set in (X, τ) is agr - closed in (Y, σ) .
- ix. b* closed map **[14]** if the image of every closed set in (X, τ) is b^* - closed in (Y, σ) .
- x. g*s closed map **[17]** if the image of every closed set in (X, τ) is g^*s - closed in (Y, σ) .

3 r*bg* - Closed Maps and r*bg* - Open Maps Definition 3.1 Let X and Y be two topological spaces. A map f : $(X, \tau) \rightarrow (Y, \sigma)$ is called r*bg* - closed map if the image of every closed set in (X, τ) is r*bg* - closed in (Y, σ).

Example 3.2

Let $X = Y = \{a, b \ c\}$ with topologies $\tau = {\varphi, X, \{a\}}$ and $\sigma = {\varphi, Y, \{b\}}$. Let $f : X \to Y$ be defined by $f(a) = b$, $f(b) = a$, $f(c) = c$. Then f is r*bg* - closed map.

Definition 3.3

Let X and Y be two topological spaces. A map f : $(X, \tau) \rightarrow (Y, \sigma)$ is called r*bg* - open map if the image of every open set in (X, τ) is r^*bg^* - open in (Y, σ).

Example 3.4

Let $X = Y = \{a, b \ c\}$ with topologies $\tau = {\varphi, X, \{a\}}$ and $\sigma = {\varphi, Y, \{a\}, \{b, c\}}$. Let $f: X \rightarrow Y$ be the identity map. Then f is $r * bg * - open$ map.

Theorem 3.5

If $f : X \rightarrow Y$ be a function from a topological space (X, τ) into a topological space (Y, σ) is an closed map then it is r*bg* - closed map but not conversely.

Proof :Let $f: X \rightarrow Y$ be an closed map. Let F be any closed set in X. Then f (F) is an closed set in Y. Since every regular closed set is r*bg* - closed set and every regular closed is closed, $f(F)$ is a r*bg* - closed set. Therefore f is r*bg* - closed map.

The converse of the above theorem need not be true as seen from the following example.

Example 3.6

Let $X = Y = \{a, b \ c\}$ with topologies $\tau = {\varphi, X, \{b\}}$ and $\sigma = {\varphi, Y, \{c\}}$. Let $f : X \to Y$ be the identity map. Then f is r*bg* - closed but not closed. Since the image of the closed set $\{a, c\}$ in X is $\{a, c\}$ is not closed in Y.

Theorem 3.7

Every $r * bg * - closed map$ is $b - closed map$ but not conversely.

Proof:

Let $f: X \to Y$ be r^*bg^* - closed map and V be an closed set in X then $f(V)$ is $r * bg * - closed$ in Y. Since every $r * bg * - closed set$ is $b - closed set$, $f(V)$ is a $b - closed$ set in Y. Then f is $b - closed$ map.

Scientific Journal Impact Factor: 3.449 (ISRA), Impact Factor: 2.114

 The converse of the above theorem need not be true as seen from the following example.

Example 3.8

Consider $X = Y = \{a, b, c\}$ with topologies $\tau = {\varphi, X, \{a\}}$ and $={\varphi, Y, \{c\}, \{a, c\}}$. Let $f: X \to Y$ be an identity map. Then f is $b - closed$ map but not $r * bg * - closed map$, since for the closed set ${b, c}$ in $X, f({b, c}) = {b, c}$ is not $r * bg * - closed$ in Y.

Theorem 3.9

Every $r * bg * - closed map$ is $g - closed map$ but not conversely.

Proof:

Let $f: X \to Y$ be $r * bg * - closed map and V$ be an closed set in X then $f(V)$ is $r * bg * - closed$ in Y. Since every $r * bg * - closed set$ is $g - closed$, $f(V)$ is $g - closed$ in Y. Then f is $g - closed$ map.

 The converse of the above theorem need not be true as seen from the following example.

Example 3.10

Consider $X = Y = \{a, b, c\}$ with topologies $\tau = {\varphi, X, \{a\}}$ and $={\varphi, Y, \{b\}}$. Let $f : X \to Y$ be an identity map. Then f is $g - closed map$ but not $r * bg * - closed map$, since for the closed set ${b, c}$ in $X, f({b, c}) = {b, c}$ is not $r * bg * - closed$ in Y.

Theorem 3.11

Every $r * bg * - closed map$ is $gs - closed map$ but not conversely.

Proof:

Let $f: X \to Y$ be r^*bg^* - closed map and V be an closed set in X then $f(V)$ is $r * bg * - closed$ in Y. Since every $r * bg * - closed set$ is $gs - closed$, $f(V)$ is gs - closed in Y. Then f is gs – closed map.

 The converse of the above theorem need not be true as seen from the following example.

Example 3.12

Consider $X = Y = \{a, b, c\}$ with topologies $\tau = {\varphi, X, \{a\}, \{a, b\}}$ and $= {\varphi, Y, \{b\}, \{a, b\}, \{b, c\}}$. Let $f : X \rightarrow Y$ be an identity map. Then f is $gs - closed map but not r[*]bg[*]-closed map, since for$ the closed set $\{b, c\}$ in X, $f(\{b, c\}) = \{b, c\}$ is not r*bg* - closed in Y.

Theorem 3.13

Every $r * bg *$ - closed map is $ga - closed$ map but not conversely.

Proof:

Let $f: X \to Y$ be r^*bg^* - closed map and V be an closed set in X then $f(V)$ is $r * bg * - closed$ in Y. Since every r^*bg^* - closed set is $ga - closed$, $f(V)$ is g α - closed in Y. Then f is g α – closed map.

 The converse of the above theorem need not be true as seen from the following example. **Example 3.14**

Consider $X = Y = \{a, b, c\}$ with topologies $\tau = {\varphi, X, \{c\}, \{a, c\}}$ and $=\{\varphi, Y, \{a\}, \{a, b\}\}\$. Let $f: X \rightarrow Y$ be defined by $f(a) = c$, $f(b) = b$, $f(c) = a$. Then f is $g\alpha$ – closed map but not $r * bg * - closed map$, since for the closed set $\{b\}$ in X, $f({b}) = {b}$ is not r^*bg^* - closed in Y.

Theorem 3.15

 Every r*bg*- closed map is swg - closed but not conversely.

Proof:

Let $f: X \rightarrow Y$ be r^*bg^* - closed map and V be an closed set in X then $f(V)$ is $r * bg * - closed$ in Y. Since every $r * bg * - closed set$ is swg – closed, $f(V)$ is swg - closed in Y. Then f is swg – closed map.

 The converse of the above theorem need not be true as seen from the following example.

Example 3.16

Consider $X = Y = \{a, b, c\}$ with topologies $\tau = {\varphi, \quad X, \quad {b}, \quad {a, \quad b}, \quad {b, \quad c}}$ and $\sigma = {\varphi, Y, {a}, {b, c}}$. Let $f : X \rightarrow Y$ be an identity map. Then f is swg – closed map but not $r * bg * - closed map$, since for the closed set ${c}$ in X, $f({c}) = {c}$ is not r^*bg^* - closed in Y.

Theorem 3.17

 Every r*bg* - closed map is rg – closed map but not conversely.

Proof:

Let $f: X \rightarrow Y$ be $r * bg * - closed map and V$ be an closed set in X then $f(V)$ is $r * bg * - closed$ in Y. Since every $r * bg * - closed$ is rg - closed in Y, $f(V)$ is $rg - closed in Y$. Then f is $rg - closed map$.

 The converse of the above theorem need not be true as seen from the following example.

Example 3.18

Consider $X = Y = \{a, b, c\}$ with topologies $\tau = {\varphi, X, {\varphi}, {\varphi}, {\varphi}, {\varphi}, {\varphi} }$ $\sigma = {\varphi, Y, \{a\}, \{a, b\}}$. Let $f : X \rightarrow Y$ be an identity map. Then f is $rg - closed$ map but not $r * bg * closed$ map, since for the closed set $\{a, c\}$ in X, $f(\{a, c\}) = \{a, c\}$ is not r^*bg^* - closed in Y.

Theorem 3.19

 Every r*bg*- closed map is αgr – closed map but not conversely.

Proof:

Let $f: X \rightarrow Y$ be $r * bg * - closed$ map and V be an closed set in X then $f(V)$ is $r * bg * - closed$ in Y. Since every $r * bg * - closed set$ is $agr - closed$, $f(V)$ is α gr – closed in Y. Then f is α gr – closed map.

 The converse of the above theorem need not be true as seen from the following example.

Example 3.20

Consider $X = Y = \{a, b, c\}$ with topologies $\tau = {\varphi, X, {b}, {a, c}}$ and $\sigma = {\varphi, Y, {a}, {a, b}}$. Let $f: X \rightarrow Y$ be an identity map. Then f is α gr – closed map but not r*bg*-closed map, since for the closed set $\{b\}$ in X, $f(\{b\}) = \{b\}$ is not r*bg* - closed in Y. **Remark 3.21**

 The following examples show that r*bg* - closed maps are independent of sg – closed maps, g*s - closed maps.

Example 3.22

Let $X = Y = \{a, b, c\}$ with the topologies $\tau = {\varphi, X, \{\varsigma\}, \{\varsigma\}, \{\varsigma\}, \{\varsigma\} \}$ and $\sigma = \{\varphi, Y, \{a\}, \{b\}, \{a, b\}\}.$ Let $f : X \rightarrow Y$ be defined by $f(a) = a$, $f(b) = c$, $f(c) = b$. Then f is sg – closed map but not r*bg* - closed map.

Example 3.23

Let $X = Y = \{a, b, c\}$ with topologies $\tau = \{\varphi, X, \{a\}, \{b\}, \{a, b\}\}\$ and $\sigma = \{\varphi, Y, \{b\}\}\$. Let $f: X \rightarrow Y$ be defined by $f(a) = a$, $f(b) = c$, $f(c) = b$. Then f is $r * bg * - closed map but not sg - closed map.$ **Example 3.24**

Let $X = Y = \{a, b, c\}$ with topologies $\tau = {\varphi, X, {\{c\}}}$ and $\sigma = {\varphi, Y, {\{a\}, \{b, c\}}}$. Let $f: X \rightarrow Y$ be an identity map. Then f is $g *s - closed$ map but not r*bg* - closed map.

Example 3.25

Let $X = Y = \{a, b, c\}$ with topologies $\tau = {\varphi, X, \{a\}}$ and $\sigma = {\varphi, Y, \{c\}}$. Let $f: X \to Y$ be defined by $f(a) = c$, $f(b) = a$, $f(c) = b$. Then f is r*bg* - closed map but not g*s – closed map.

Theorem 3.26

Every open map in (X, τ) is $r * bg * -$ open map but not conversely.

Proof :

Let $f: X \rightarrow Y$ be an open map. Let F be any open set in X . Then $f(F)$ is an open set in Y . Since every regular open set is r*bg* - open and every regular open is open, $f(F)$ is a r*bg* - open set. Therefore f is r*bg* - open map.

The converse of the above theorem need not be true as seen from the following example.

Example 3.27

Let $X = Y = \{a, b, c\}$ with topologies $\tau = {\varphi, X, {\varphi}}$ and $\sigma = {\varphi, Y, {\{a\}, \{b\}, \{a, b\}, \{\}$ ${b, c}$. Let $f: X \rightarrow Y$ be the identity map. Then f is r*bg* - open map but not an open map, Since the image of the open set $\{c\}$ is not open in Y.

Remark 4.33

The following diagram shows the relationship between r*bg* - closed maps with various existing closed maps.

In this diagram CM means closed maps.

Theorem 3.28

A map $f: X \to Y$ is $r * bg * - closed$ if and only if for each subset S of Y and for each open set U containing $f^{-1}(S)$ there exists a r*bg* - open set V of Y such that $S \subseteq V$ and $f^{-1}(V) \subseteq U$.

Proof :

 Necessity: Suppose that f is a r*bg* - closed map. Let $S \subseteq Y$ and U be an open subset of X such that $f^{-1}(S) \subseteq U$. Let $V = Y - f(X - U)$. Since f is $r * bg * - closed$, V is $r * bg * - open$ set containing S such that $f^{-1}(V) \subseteq U$.

Sufficiency: let F be a closed set of X. Then $f^{-1}((f(F))^c) \subseteq F^c$ and F^c is open. By assumption, there exist a r*bg* - open set V of Y such that $(f(F))^c \subseteq V$ and $f^{-1}(V) \subseteq F^c$ and so $F \subseteq (f^{-1}(V))^c$. Hence $V^c \subseteq f(F) \subseteq f((f^{-1}(V))^c) \subseteq V^c$ which implies that $f(F) = V^c$. Since V^c is r^*bg^* - closed, $f(V)$ is r*bg* - closed and therefore f is r*bg* - closed.

Theorem 3.29

If f : $X \rightarrow Y$ is a closed map and $g : Y \rightarrow Z$ is r*bg* - closed map then $g \circ f : X \to Z$ is r*bg* - closed map.

Proof :

Let $f: X \to Y$ is a closed map and $g: Y \to Z$ is a r*bg* - closed map. Let V be any closed set in X. Since $f: X \to Y$ is closed map, $f(V)$ is closed in Y and since $g: Y \rightarrow Z$ is $r * bg * - closed$ map, $g(f(V))$ is r*bg* closed in Z. Therefore $g \circ f : X \to Z$ is r*bg* - closed map.

Remark 3.30

 The following example shows that the composition of two r*bg* - closed maps is r*bg* - closed map.

Example 3.31

Let $X = Y = \{a, b, c\}$ with topologies $\tau = {\varphi, X, {\varphi}}$, $\sigma = {\varphi, Y, {\varphi}}$ and $\eta = {\varphi, Z, \{a\}, \{\{b, c\}\}.$ Define a map $f: X \to Y$ by $f(a) = b$, $f(b) = a$ and $f(c) = c$ and a map $g : Y \rightarrow Z$ by $g(a) = b$, $g(b) = a$, $g(c) = c$. Then both f and g are r*bg* - closed maps but their composition

Scientific Journal Impact Factor: 3.449 (ISRA), Impact Factor: 2.114

 $g \circ f : X \to Z$ is not r*bg* - closed map. Since for the closed set $\{b, c\}$ in X, $(g \circ f)(\{b, c\}) = \{b, c\}$ is r*bg* - closed set in Z.

Remark 3.32

If f : $X \rightarrow Y$ is r*bg* closed map and $g: Y \rightarrow Z$ is closed then their composition need not be a r*bg* - closed map as seen from the following example.

Example 3.33

Let $X = Y = \{a, b, c\}$ with the topologies $\tau = {\varphi, X, {a}, {b}, {b}, {a, b}, {b, c}}, \sigma = {\varphi, Y, {a, b}},$ ${b}$ } and $\eta = {\varphi, Z, {b}$, ${b, c}$, ${a, b}$ }. Define a map $f: X \to Y$ by $f(a) = a$, $f(b) = c$, $f(c) = b$ and $g: Y \rightarrow Z$ by $g(a) = b$, $g(b) = a$, $g(c) = c$. Then f is a r*bg* - closed map and g is closed map. But their composition $g \circ f : X \to Z$ is not a r*bg* - closed map. Since for the closed set {a, b} in X, $(g \circ f)(\{a, b\}) = \{b, c\}$ is not r*bg* - closed in Z.

Theorem 3.34

For any bijection f : $(X, \tau) \rightarrow (Y, \sigma)$ the following are equivalent.

- a) f⁻¹ : $(Y, \sigma) \rightarrow (X, \tau)$ is r^*bg^* – continuous.
- b) f is a r^*bq^* open map.
- c) f is a r^*bg^* closed map.

 Proof:

- a) \Rightarrow (b) : Let U be an open set of (X, τ) . By assumption, $(f^{-1})^{-1}(U) = f(U)$ is $r * bg * - open in (Y, \sigma) and so f is$ r*bg* – open map.
- b) \Rightarrow (c) : Let F be a closed set of (X, τ) . Then F^c is open in (X, τ). By assumption, $f(F^c)$ is r^*bg^* – open in (Y, σ) . (i.e), $f(F^c) = (f(F))^c$ is $r * bg * - open in (Y, \sigma)$ and therefore $f(F)$ is $r * bg * - closed$ in (Y, σ) . Hence f is r*bg* – closed.
- c) \Rightarrow (a) : Let F be a closed set of (X, τ) . By assumption, f (F) is $r * bg * - closed$ in (Y, σ) . But f $(F) = (f^{-1})^{-1}(F)$ and therefore f⁻¹ is r*bg* –continuous on Y.

Theorem 3.35

If $f: X \rightarrow Y$ is a continuous, r^*bg^* - closed map from a normal space X onto a space Y , then Y is normal.

Proof :

Let A, B be disjoint closed sets of Y. Then $f^{-1}(A)$ and $f^{-1}(B)$ are disjoint closed set of X. Since X is normal there are disjoint open sets U, V in X such that $f^{-1}(A) \subseteq U$ and $f^{-1}(B) \subseteq V$. Since f is $r * bg * - closed$, then by theorem 3.28, there exists r^*bg^* - open sets G, H in Y such that $A \subseteq G$, $B \subseteq H$, $f^{-1}(G) \subseteq U$ and $f^{-1}(H) \subseteq V$. Since U, V are disjoint, $int(G)$ and $int(H)$ are disjoint open sets. Since G is

r*bg* - open A is closed and $A \subseteq G$, $A \subseteq int(G)$. Similarly $B \subseteq int(H)$. Hence Y is normal.

Theorem 3.48

If f : $(X, \tau) \rightarrow (Y, \sigma)$ is an open, continuous, $r * bg * - closed surjection and cl(F) = F for every$ r*bg* - closed set in (Y, σ) , where X is regular, then Y is regular.

Proof :

Let U be an open set in Y and $p \in U$. Since f is surjection, there exists a point $x \in X$ such that $f(x) = p$. Since X is regular and f is continuous, there is an open set V in X such that $x \in V \subset cl(V)$ $\subset f^{-1}(U)$. Here $p \in f(V) \subset f(cl(V)) \subset U \to (i)$.

Since f is $r * bg * - closed$, $f(cl(V))$ is $r * bg * - closed$ set contained in the open set U. By hypothesis, $cl(f(cl(V)))$ = $f(cl(V))$ and $cl(f(V)) = cl(f(cl(V))) \rightarrow (ii).$

From (i) and (ii), we have $p \in f(V) \subset cl(f(V)) \subset U$ and f(V) is open, since f is open. Hence Y is regular.

REFERENCES

- [1] Ahmad Al Omari and Mohd. Salim Md. Noorani, On generalized $b - closed$ sets. Bull. Malays. Math. Science Soc(2) 32(1) (2009),19-30.
- [2] Andrijevic. D, On b open sets, Mat. Vesink, 48 (1996), 59-64.
- [3] I.Arockiarani, Studies on Generalizations of Generalized Closed Sets and Maps in Topological Spaces, Ph. D Thesis, Bharathiar University, Coimbatore, (1997).
- [4] Arya S. P and Nour. T, characterization of s – normal spaces, Indian J. Pure.Appl. Math.,21(8)(1990), 717 – 719.
- [5] Bhattacharya and Lahiri. B.K, Semi generalized closed sets in topology, Indian 29(3) (1987), 375 – 382.
- [6] Devi, R., Maki, H. and Balachandran, K., "Semi – generalized closed maps and generalized semi – closed maps", Mem. Fac. Sci. Kochi Univ. Ser.A. Math., 14 (1993), $41 - 54.$
- [7] Devi R, Mahi. H and Balachandran K., Semi – generalized homeomorphisms and generalized semi – homeomorphisms in topological spaces, Indian J. Pure. Appl. Math., 26(3)(1995), 271 – 284.
- [8] M. Elakkiya, N. Sowmya, and N. Balamani, r*bg* - closed sets in topological Spaces, International Journal Of Advance Foundation and research in Computer, Volume 2, Issue1, January2015.

[Elakkiya, 4(3): March, 2015] ISSN: 2277-9655 Scientific Journal Impact Factor: 3.449 (ISRA), Impact Factor: 2.114

- [9] Levine N, Generalized closed sets in topology,Rend.cire.math.Plaermo,19(2) (1970).
- [10] H. Maki, R. Devi and K. Balachandran, Associated topologies of generalized α closed sets and α-generalized closed sets, Mem. Fac. Sci. Kochi Univ. Ser.A. Math., 15(1994),51-63.
- [11] H.Maki, R.Devi, and K.Balachandran ,Generalised α-Closed sets in Topology, Bull.Fukuoka Univ,Ed.,Part III., 42, 1993,13-21.
- [12] S. R. Malghan, Generalized Closed Maps, J. Karnatk Univ. Sci., 27 (1982), 82-88.
- [13] Muthuvel.S and Parimelazhagan .R, b*-closed sets in topological spaces, Int. Journal of Math.Analysis, Vol.6,2012, no.47,2317-2323.
- [14] Muthuvel.S and Parimelazhagan .R, b*-continuous functions in topological spaces, Int. Journal of Computer Application, Vol.58, no.13,0975- 8887.
- [15] N. Nagaveni, studies on generalization of Homeomorphisms in topological spaces, Ph.D. Thesis – Bharathiyar University, July 1999.
- [16] Palaniappan.N and K. C. Rao, Regular generalized closed sets, Kyungpook Math.J. 33(1993), 211-219.
- [17] Pushpalatha A and Anitha K. g*s–closed sets in topological spaces, Int. J. contemp. Math. Science, Vol.6;March-2011,no19,917-929.
- [18] M.K.R.S.Veera Kumar, On α-Generalised –Regular Closed Sets, Indian Journal of Mathematics.,44(2),2002, 165-181.